COURSE CODE:	CE-455	
COURSE NAME:	Water Resources and Irrigation Engineering	
CREDIT HOURS:	Theory = 2	Practical = 1 Total = 3
CONTACT HOURS:	Theory = 32	Practical = 16 Total = 40
PREREQUISITE:	None	
MODE OF TEACHING:	Two hours of lecture per week	
	Three hours	of Lab work per week

COURSE DESCRIPTION:

This course is designed to familiarize the students of environmental engineering with the knowledge of water resources management and irrigation engineering. The course is divided into five sections. The first section discusses the water resources with a special focus on Pakistan's water resources and Indus Water Treaty. Second sections of the course will be covering topics such as water requirement, irrigated agriculture, and types of irrigation methods (traditional and advanced) with an added focus on canal irrigation systems and losses. Third and Fourth section discusses canal irrigation system, design of irrigation channels (Canals) and description of control structures such as dams, barrages, and headworks with a focus on their various components including canal head regulators, falls, canal outlets, cross drainage works, canal lining and maintenance of irrigation canals. Fifth section discusses the problems associated with irrigation i.e. Water logging and salinity together with the concept of drainage.

RELEVANT PROGRAM LEARNING OUTCOMES (PLOs):

The course is designed so that students will achieve the PLOs:

Engineering Knowledge: $\mathbf{\nabla}$ 7 1 Environment and Sustainability: \square 2 Problem Analysis: 8 Ethics: \square 3 Design/Development of Solutions: $\overline{\mathbf{A}}$ Individual and Teamwork: $\mathbf{\nabla}$ 9 4 Investigation: 10 Communication: \square \square 5 Modern Tool Usage: 11 Project Management: \square \square 6 The Engineer and Society: \square 12 Lifelong Learning: \square **COURSE LEARNING OUTCOMES:**

Upon successful completion of the course, the student will demonstrate competency by being able to:

Sr. No.	CLO	Domain	Taxonomy Level	PLO
1	UNDERSTAND the basic principles of water resources planning and management, and irrigation engineering	Cognitive	2	1
2	Apply design considerations for open channel hydraulics and surface drainage	Cognitive	3	3
3	Practice flow measurements using various hydraulic structures	Psychomotor	3	1
4	Maintain ethical conduct in lab and adhere to lab safety procedures while contributing effectively towards individual and/ or group goals.	Affective	5	9

PRACTICAL APPLICATIONS:

Pakistan has the largest contiguous irrigation system in the world i.e. Indus Basin Irrigation System (IBIS) sustaining vast areas of croplands throughout the country. However, as water requirements are increasing, careful monitoring and designing of canal irrigation system is required to enhance its efficiency during regulation, operation and control. This course will provide our students with a chance to practically employ learned skills in an array of ways. This course will enable the environmental engineering students to understand the basic principles of water resources management and irrigation and apply those learnings on the ground.

TOPICS COVERED:

Week	Topic Covered	Reading Assignment/ Homework	CLO #
1	Introduction to water resources & irrigation	Chapter 1	1
2-3	Water resources of Pakistan, Indus Water Treaty, Water Accord	Chapter 1 Quiz 1 Assignment 1	1
4-5	Components of Irrigation	Chapter 2 Assignment 2	1

		Quiz 2	
6-7	Crop Water Requirement, Irrigation	Chapter 3	
	Techniques	Assignment 3	1
		Quiz 3	
8	Control Structures (Dams, Barrages and	Chapter 4	2
	Headworks)	Quiz 4	2
9	Mid Semester Exam		
1-11	Canal Irrigation and design of channels	Chapter 5	2
		Assignment 4	2
12-	Canal Control and Regulation Works	Chapter 6	2
13		Quiz 5	2
14-	Cross Drainage Works, outlets	Chapter 7	
16		Assignment 5	1,2
		Quiz 6	
17	Water logging and salinity, Drainage, Disposal of	Chapter 8	12
	drainage effluents		1,2
18	End Semester Exam		

LIST OF PRACTICALS:

Not Applicable

Sr.	Practical	CLO
No.		#
1	Characteristics of Flow over Sharp Cornered Broad Crested Weir	3
2	Characteristics of Flow over Round Cornered (Streamlined) Broad	3
2	Crested Weir	
3	Characteristics of Flow over Crump Weir	3
4	Sluice Gate: Under Free Flow Condition Assess Q(H) & compare with Qin	3
5	Sluice Gate: Under Submerged Condition Assess Q (H Upstream, H	3
0	Downstream) & Compare with Qin	
7-8	Flow Measurements in Parshall Flume Q(H) & Comparison with Qin	3
9	Flow Measurements in Venturi Flume Q(H) & Comparison with Qin	3
10	Flow Measurements in WSC Flume Q(H) & Comparison with Qin	3
11	Characteristics of Flow over Gravel Bed	3
13-	Characteristics of Flow over Corrugated Bed	3

14		
15-	WINFLUME: Getting Familiar with the Software	3
16		
17	Design of Long-Throated Flume using WINFLUME	3

TEXT AND MATERIAL:

References Material:

- 1. Hydrology for Engineers, Geologists and Environmental Professionals (2nd Edition) by Sergio E. Serrano, 2010. ISBN: 9780965564342
- 2. Sharma R. K. and T.R. Sharma, Irrigation and Drainage, Vol-1 to V. Oxford and IBH Pub. Co.
- 3. Linslay R. K, and B.F. Joseph, Water Resources Engineering, McGraw Hill.
- 4. Siddiqui, Iqtidar H., Irrigation and Drainage Engineering, Oxford University Press
- 5. Punmia B.C., "Irrigation & Water Power Engineering", Standard Publishers, Delhi
- 6. Garj S.K, Irrigation Engineering and Hydraulic Structures (19th Edition) 2005, Khanna Publishers, Dehli
- 7. FAO Irrigation and Drainage Papers

ASSESSMENT SYSTEM:

Theoretical/Instruction	67%
Assignments	10%
Quizzes	15%
Mid Semester Exam	30%
End Semester Exam	45%
Practical Work	33%
Lab Attendance	20%
Lab Report	20%
Lab Quiz	30%
Lab Rubrics	30%